Theory of solids I.

Proposed Topics.

1)
1)

1)

V)

Fermi statistics, second quantization and Sommerfeld theory of metals.
The Lattice. Bands. Metals and insulators.

Electron-Electron correlations.

Magnetism. Itinerant and localized.

Electron-phonon interaction.



Theory of solids I. Summary sheets.

|) Second quantization.

Spin and statistics.

The wave function of identical fermions (bosons) is totally antisymmetric (symmetric).

Let |U)be the wave function of N identical bosons or fermions and P; ;
an operator which interchanges particle i and j. Then

. _ { 1 for bosons

—1 for fermions

P@j“l’) = E|\If> with

Slater determinants. (Totally antisymmetric states for identical fermions)

Let H be the Hilbert space of a single particle.

For the electron:  H = L*(R?) ® C?

The N-particle Hilbert space is then given by: Hy = :H OQH® - ® fHJ

N times



let |E) beabasisof H : Z |[E)(E| =1 and (E|E’) =g g

>|E1,Ee,---En) = |E1) ® |E2)--- ® |EN) isabasisof HN. Thatis:

S |E1,Ba,- - En)(E1, B, Ey| =1 and
Ey,Ee,--EN

(E1, B2, EN|Ey, By, - EN) = 0, B, - OBy, B

Slater determinant.

Ve, B, Z 1)"P|Ey,,- - En) =
PeS(N)

= — Z (=D"IEpay:»- - Epv))
VN p &St

P is a permutation of N objects. (—1)P is the sign of the permutation.



Notes / Comments.

a) To uniquely define the phase of a Slater determinant, and ordering of single particle

eigenstates has to be adopted. For example: E{ > Fy > --- > Ejy

( Important since the state |U) = |Up, p,) + ei""|lIJE3,E4) differs from the state

|IIJ> — |KDE1,E2> - eigo|lIJE3,E4> )

b) The Slater dets build a basis of the physical Hilbert space of N identical particles.
|qj> — Z f(ElaE?a'"EN)|\D51,E2,"'EN>
ElaEQa"'EN

Ve g B |VYE, By Ex) = OB OB, E, - " OB, Ex



c) Real space representation of Slater determinant.

(1,22, 2N|VE, ByBy) = VE, By En (T1,22, - ZN) =
— 1 Z (=1)P (21, 22 - xN|Epays s Ep(ay)
VAV PES(N)
E‘Ilpp(l)(:r:q)
1 e e
~ UM Y (=DF (@lEpay ) (@n|Epav))
' PES(N)
[(Up(o) Vs (es) o V(o) )
1 . . . :
= det
vV N! ,
Position and spin \ Upy(r1) Yey(r2) -+ VYgy(zn) /




c) Expectation value of operators between Slater determinants.

Let. One part. Op. Two part. Op.
1
<ZLJ1,£C,2,‘"xE\r|H|x1,$2,"'$N>:5:1:1,3;;" :CNiU (ZHO .CCn 5 ; V("L‘n,xm))
n==1mm

Ve g e HIYE, By Ey) =

Z(_l)P Z H <E;:’(s) |ES><EED(m) |H0|Em>+

n  s#Em

P

n#Em s#Em,n

Note that:
(Epin) Epm)|VIEn, Em) = Y Ve, @), (22)V(21,22)¥E, (21)VE,, (22)

P(m)
Ty1,T2



Example: For two particles

(Ve g | H|YE, B,) =08, B (E5|Ho|E2) + 6, g (B | Ho| E2)—
O0p,,p) (Ey|Ho|Er) — g, g (B[ Ho| E2)+

<Eia EEIV|E17 EZ) _ <E£a EQIV‘E% El)

— /
v

Exchange Interaction.



The occupation number space.

Let |n1, No, N3, " -+ ?’LOO> define a physical state with 7; particles in the single

particle state 2 . We will again assume an ordering of the single particle states. (According

to energy for example)

The states |n1, No, N3, + ?’LOO> build a basis of the Fock space.

%F:@?\/‘O=0%Na %N:\?'[@"'@%

N times
E N1, M2,n3,* * Nog) (N1, N2, N3, Noo| = 1
n1,N2, " yNoo
/A / /
<n17 Mg,y Mg,y noo|n17 n2,n3, - noo) — 5n"1,n15n5,n2 T 5ngo,noo

For fermions: n; = 0,1 For Bosons: 1 =0, ,00



Fermionic creation and annihilation operators.

AT 4 . . s
Let €; (C:) denote fermionic creation ( annihilation) operators. These operators are

defined through the anticommutation relations.
{ehe;b=ele;+ el =0, {ehelb ={e. e} =0

The vacuum state |0) is defined by: ci|0) = Vi

With the above definitions:

ni n2 Moo
n1,nz,ma, - moe) = (&) (&) -+ (ee) ™ o)

Properties.

a) Two fermions cannot be in the same sate since r}i ¢, =0






Operators in the occupation number representation.

The first quantized operators A act on the space of Salter determinants.

The second operators A act on the occupation number states.

Let ‘@E{.-Eé-“'Efw} and \'Q[’,ijﬁg__,.,p:w} be two Slater determinants. The second

guantized form of the operator A is defined by:

To give an explicit form of the second quantized operator it is convenient to introduce

field operators:
V(@) = L ehein)! = X dhvh(e

The field operator creates a particle at position x since:

U(2)|0) = ) eLI0)(Elz) = ) |E)Ela) = |z >

E E



Let the first quantized form of a Hamiltonian in real space read:

(wagxlzg'"$EV|HI$1)$21"'$N) = 631”’; .o stmN (Zﬂo(wn)'l' Z V(:L'n,mm))

nF m

Then:

H=> U'(z)Hy(z)¥ (z)— % D Ul (@)W (22)V (1, 22) ¥ (1) W (22)

I1,E2

/! 117 A~
E <E E IVIE E > ECEfCEHCEm
E,E’ E,E',E" E"

DN | =



II) Sommerfeld theory of Metals. (Fermi liquid fix-point.)

2m

p2 . |
H=> -l Hy = N HO HO = £2(R?) ® C?

One-particle states:

Periodic boundary conditions in a box of linear length L yields the quantization

2 1 1
ﬁ:h_ﬂ- (n1)n23n3) n@EZ and C:—:

L vV T







Ground state wave function. |Wo) = H é};.,a|0)

P,o
E(ﬁ')(ﬁp

The locus of momenta with €(p) = €  defines the Fermi surface.

1d: two points . V2mep -

2d: acircle \kp| = ——F—— p=hk
3d: the surface of a sphere

. .l eF
Ground state energy. By = (‘I’0|H|‘I’0> =2 E : e(k) = V2/ deg(e)e
0

Density of states:




E[}

dp2+1 "
. . oF 4V
Particle Number: N = (| Znﬁ,a|‘1’0> — 2V/ deg(e) = dad EFd/2
pio 0
Thus: Eo(N,V) x Np*? where p= N/V

Hence and as required by thermodynamics Fq( [V, V) is a homogeneous function,

Eo(AN,A\V) = AEo(N, V)

and

PE(NV)| PEN.V)|
ON? |, vz |,




Thermodynamics:

1 ~ N
: : A — —p—B{H—pN
Density matrix in grand canonical ensemble: (Mixed state) P = Ze ( )
7 _ Trﬁ_;a(ﬁf_,mﬁ;r) Partition function.
N = Ny.o Particle number operator.
p.o
1
B =— Inverse temperature.
' kT
1 Chemical potential.
Expectation value of an observable: ((j) = Trp O

Properties for free electrons:

) 1
zZ=1] (1 + e—-ﬁ’[f“'*i‘—“]) 7o) = T o P

P,

Fermi-function.



The Fermi Function.

|
L.4r-

1.2~

— 00 b b2

T
S

1
08 4
0.6
0.4

0.2~

Thermal smearing occurs on the scale kT

N -

N

7

\ '

g °
\ Chemical potential: 4 = 4

Electrons at energies kg1’ below the chemical potential are frozen out !



Specific heat.

Using the Sommerfeld expansion:

[ T e he)f(e) = [ " h(e) +h () (ksT)? = + O(kpT?

wf = [Tx) o — 6

One will show that the specific heat is given by:

22
TkBQ(Ef)T + O(T?)

o (9

Each electron acquires a thermal energy kT’

# of particles which acquire this energy (Fermi statistics) is kp Tg(ff)

E o« (kpT)g(ey)



Pauli spin susceptibility.

First quantized form of Hamiltonian:

P2 GHB h
H=—®I1- B; ® S; with S; = —o;
2m @ h ; FE o2
3
0i arethe Paulispin matricesand:  [S;, 5] = iZE"’j’kSﬁ.
k=1

Second quantized form:




Magnetic field in z-direction:

Induced magnetization of the electron gas: M = Z S

C—i Cﬂ -
P, TP T

—

P

= —2/B f de g(e) 3](;(:)

With the Sommerfeld expansion:

2

s = () + 9" (1) (ks T)* T + O(hisT*)

Ai -~
Co C
P P
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THE SPECIFIC HEATS OF METALS
AT LOW TEMPERATURES

By D. H. PARKINSON

Roval Radar Establishment, Great Malvern, Worcestershire
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Figure 16. Experimental results for the alkaline earth metals. Plot of Cyp/T against T2

1958 Rep. Prog. Phys. 21 226



PHYSICAL REVIEW B

VOLUME 27, NUMBER 5

Specific heat of normal liquid *He

Dennis S. Greywall
Bell Laboratories, Murray Hill, New Jersey 07974
(Received 22 October 1982)

Cy/RT (K™

T (mK)

FIG. 14. Specific-heat measurements plotted as
Cy/RT vs T. Numbers give the sample pressures in bars
at 0.1 K. Solid curves are least-squares fits of the data
using Eq. (11).

1 MARCH 1983



PHYSICAL REVIEW B

VOLUME o1, NUMBER 2

1 JANUARY 2000-II

Effective mass, spin fluctuations, and zero sound in liquid *He
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FIG. 10. Measured specific heat C{T) (Ref. 19) (dots) as a
function of temperature compared with Cy{(T) calculated using a
free Fermi gas model m*=2.8 (dotted line) and with the mass-
enhanced model m* (k). Eq. (8). with f=0.35 and my=1.7 (solid
line), with /=0.5 and m =1 (dashed line), and with best-fit values
F=0.26 and my=0.53 (dash-dotted line).
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FIG. 11. Measured static magnetic suseeptibility y(T) (Ref. 47)
{dots) multiplied by the temperature compared with (7T T calcu-
lated using a free Fermi gas model m™*= 2.8 (dotted line)} and with
the mass-enhanced model m™* (k). Eq. (8). with f=0.35 and my,
=1.7 (solid line), with f=0.5 and my=1 (dashed line), and with
=026 and my=0.53 (dash-dotted line), the wvalues that give a
good deseription of the specific heat.



II) The Lattice.

Electrons are subject to a periodic potential. Let

—

Rz = nidy + neds + n3as denote the unit cells of the crystal structure.

a; are the lattice vectors.
For N-ions per unit cell of net charge Zp, and located at the positions '?F:u, with respect to
R7 the ionic potential reads:

_* *}z :j :
V—mn I — —€

n p=l1

|=E_ R ;)|

P2 L . ,

Hence H = 2_ + VL_MH(?) is invariant under translations ¥ — I + ﬁﬁ‘
m

- Crystal momentum conservation and Bloch theorem.



The translation Operator.

Def: T3|%) = |Z + @)

Properties. f{_;[ ﬁ; =1 Unitary.

£ R

5Ta Abelian group.

1515 =15 5

For T3\ = A@)|A) |[A@)] =1 and A@A(B) = \(@+b)

—

At S -~ " . .
TEXTE — X 4+ a Transformation of position operator

—

s

T;Pﬂ; =P Transformation of momentum operator

[TaH] —0

Symmetry.

> Eigenvectors of H can be chosen to be also eigenvectors of T



Bloch - ‘11;,“} H|‘I’n) = En.|‘I’n)
T, [ ¥n) = A(B2)| L)

Since: Ry = n1@1 + noda +nads ,  MBxz) = A" (@1)A"2 (d@2) A" (a@3)

Let N@j) =e*™ j=1,2,3 z; eR and  b;-a@; = 2md;,;

e

Then: A(Rj) = e i with k = x1b; + xobo + 23b3

—

Reciprocal Lattice. G = miby + mobs + msbs m; € Z

Bloch, rewritten H|n, E) = ER(E)M, E)

Ty In, B) = & 7|, E)

> |n, ;T) = |n, b+ @’} The crystal momentum can be restricted to the Brillouin zone
| (Wigner Seitz cell of the reciprocal lattice.)

n,kcBZ



Example of Brillouin zone: Triangular lattice.

Real space.

Brillouin Zone. Wigner Seitz cell of the

reciprocal lattice.

by

Construction of the Wigner-Seitz cell.

®

y
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o
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V3a

S
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2

27
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3a

)



Bloch states.

> Real space representation. (ﬂ'na _i) — ‘I’n,];' f) — eikifun,iﬂ'(f)

> Extended states.

» Quantization of crystal momentum follows from boundary condition.

= - — — Ty = mao - T
U, p(@+La;) =V, (T) k= Ll br+ —=b + —dba m; € Z
> Field operators.
V{(7)(0) = |7, 5) = .k, ) sk, |Fs) = Y W) (@) €] ¢ [0)
n.k€BZ,s’ n,keBZ

» Second quantized Hamiltonian

H:Zfat13 fd3 0) (&, s|H|&, sV _, ()
> EnlR)E p e,

'I?.,EE BZ.s



Wannier Functions.

» Let NN be the number of unit cells and let us assume periodic boundary conditions.
Then

~ My Mo - 3 -
1 e - k=—b+—by+—b3 m;€Z
v 2 =g L Lt
- I?,—; A'_-E BZ
R Runsover all unit cells.
|?1k) _ L E :Ei.ﬂ:-ﬁr l E ik'-R; |” 11
vV IN = vVIN .
Ry keBZ
\_ g _
= |n,R;)  Wannier state

> Bloch = Delocalized
Wannier = Localized.

» Completeness: Z |ﬂﬁﬁ><ﬂﬁﬁ =



» Note. The Wannier states are not uniquely defined. Let U be a unitary transformation
which rotates the band index. Then,

hu',n ds

In,Ri) = —= Z Z L_iEr'ﬁﬁUﬂ?mhﬂ?E!}

ﬁEH/ m=1

equally defines a Wannier state.

> Field Operators.

wi(#)]0)

]
BN
v}
T
1
ay

=
T
—
o]l
=1
w"-.
BN
=

ﬂ.._.Rﬁ
Fermionic commutation rules.

4 o fat At . .
¢ L ¢ . = 0pnlp 30ss and ¢ - ¢ =4q¢ = ,C = =0
{ n,R.s" n' R.s IR RTS,S n,H.s" n' R8s n,g,s" n' R,s




» Second quantized Hamiltonian (tight binding)

M=y / Pz f B V(F)(F, 5| H|T, §') T, ()

- t. (R—R)e - ¢ .
Z n (R —R) n.R,s n' R'.s

-r;-.,:rt"._.’.{:.J}",S
Hopping matrix element between Wannier states centered around R and R’ .

(7R

T

tnn (R —R') = / Az ®! (¥ — R)H(P,#)®



A o
H=-t Z (C;,oc?+c'i,a

—
—

i—=a---La,o

1 =na Direct lattice.

- a 2w _ .

(G = n— —  Reciprocal lattice.
al |d|

~
> L Cs
1+a,0 1,0

Periodic Boundary.

e =
i+ La,o 1.0
. G
E=m—

L

=

) = —2tcos(k - d)

,.‘
o~
eyl !

For




l11) Electron-electron correlations.

Coulomb repulsion in second quantization.
General form. Hubbard model. Gellium.
Kubo Linear response.

Zero temperature, Finite temperature.

Response to an eternal potential.

The dielectric constant.
Screening, Plasmons, Friedel oscillations.

Lifetime of a quasi-particle

Landau theory of Fermi liquids.



Il a Coulomb repulsion in second quantization.

_,,) . 2
H = Z QTH e—ion I, ; V ) with V(T) — m
: : T (Z) ¢
Field operators: I Z ‘Ij f ! n. ks Bloch representation.
?.i,,.f\.EB/:
. 1 — — — —
H= ) a®d .tz towd, Y Alki+ke—ks—ka)x
keBZ,o,n 81,82 £ ,Kq,Rg,ks

ni,n2,n3,74

/\1‘ o s
v(klan17k23n2nk3:n37 k41n4)c = C & &

‘ﬂ-1-,-k1,31 ﬂz,kz-,--sz ﬂa,ka,sz ﬂ4,k4,31

1

A(k) = N Z e"™  Laue function. Crystal momentum conservation up to reciprocal
B lattice vector

-3'['!~'Fl-”1~L:'g-“z-ﬁ":f.-”:pﬁrl-”-tj = -\'ng'”m": / (‘ffﬂ’lfh,i*‘lI (ULJ‘I’T (g2)V(ih — i + f?}‘lfa (G2)¥.  (41)
. E.E | Ty ko

K ks 13 kg g



Crystal momentum conservation.

—

kl_EéL:E:j_EB:@

2
Question: C ~ 10V for r=10"10 ep = TeV Cu
T

a) Is the Fermi surface stable against correlation effects ?
b) Are aspects of the Sommerfeld theory of metals still applicable?

For example 1D = Fermi liquid is unstable to so called Luttinger liquid
(Possible theme for Seminar.).




Simplifications:

a) Narrow bands: (i.e. Wannier wave functions have little overlap)

v(ky,nq, I.o nz,f,; ns, ,314,;'34) v(q, k. :’43 ny,Ng, N3, Ny) =~ v({, N1, N2, N3, Ny)

:T

E E iy = q
Single Band:

I - 1 RN A
-~ _ E ol oe _ E ,—1q- R E L
n(q Ct < i 75 ~ e Cs Cx,

H= ) )& &, +UY A5,  upbard model
keBZ,s R

Spin-s particle number count in Wannier state centered at R.



Hubbard and Heisenberg models (Possible theme for Seminar.)

:_t Z CIGCJG

<i,j>o

+ ZU(CTC ~1/2)(¢' €, -1/2)

S

Metal

N(®)

4t

4t

()

A

Half-filling: Insulator. Charge scale U

S

Charge is localized spin is still active.

Strong coupling: U/t >>1, Half-filling.

‘é/ /4’[,/ U ot / / Magnetic scale: ] ~%

H=J>, S-S, Heisenberg model.

<, j>




The Mott Insulator. Half-band filling (2D square lattice)

Charge. Spin.
uit=4 Uit=4
? 17
Nl CHi
Z A 4l
° 5 p 0 p 8 o "
) 00)  (Om) () (0,0}
O/t q
', 0.16
gl = g1zt
O o8 =S
3 B 008 -
-] o06F Ea" 0.04
0.2 | | | | | | 0 1 1 1 ] 1 1
0 005 [?L_l 015 02 025 0 005 D.ll .15 02 0325
A S
Quasiparticle gap > 0 Long-range antiferromagnetic order.

Gapless spin excitations: Spin waves.

F.F. Assaad M. Imada JPSJ 95. (Auxiliary field QMC)



Spin excitations are present below the charge gap (1.3 t)

13.7
13.1
17.9
556.0
21.6
11.7
9.92
10.9
16.4
3.78
18.1

S(q,

F.F.

The Mott Insulator. Half-band filling (2D square lattice)

I ! I I 1 | I

(0,0)

_—
[
—

1

(0,7)

1 | | | 1 1 1 (U, 0)
0 01 02 03 0 0.5 06 07 08
w /4 t

) =Y [(nlST(@0)*6(w — (En — Eo))

T

F

Assaad M. Imada JPSJ 95. (Auxiliary field QMC)

S(q)

S(r, )N

Spin.
Ut=4

17
g
4 L
o r
{000 (0.} (T.m) (0,09
0.16
012 r
008 |
0.04

° n:ln n::.nI::j 071 D.Ilj n::.lz D.I’«ﬁ

s

Long-range antiferromagnetic order.
Gapless spin excitations: Spin waves.



The metal insulator transition and correlated states in the vicinity of the Mott insulator.

“ Sn/Si(111): A half-filled Hubbard
A model on a triangular lattice. P1.
Metal ' b)
15 Mott insulator/ —U/W k B
Quantum Magnet " wangiton
_E pseudogap
Bandwidth controlled (2D) ..,-:.Tgl,;,’m((.{?;hff v
Doping induced (2D) itactipn 1l

- high-temperature superconductivity.
2D Organics. (Kagawa et al. Nature 05)

N).]Br
b cunenyc “INEN:
LETTERS nature, l Cu(NCS
PUBLISHED ONLINE: 10 JANUARY 2010 | DOL 10.1038/NPHYS1499 phySlCS * 4 I; (N }2
‘ oo
sl e : . . 100 - 1 ' '
Superconductivity in one-atomic-layer metal films & Paramagnetic . |
: Critical endpoint
grown on Si(111) -E. Mott.insulator : . po
8 : i Paramagnetic
Tong Zhang"?, Peng Cheng', Wen-Juan Li'?, Yu-Jie Sun', Guang Wang', Xie-Gang Zhu', Ke He?, o i ' metal
Lili Wang?, Xucun Ma?, Xi Chen'*, Yayu Wang’, Ying Liu3, Hai-Qing Lin4, Jin-Feng Jia' 2 10 - : *-:——L.
and Qi-Kun Xue?* £ . 1l T\
o Antiferro- . 1
= magnetic Unconventional
insulator syperponductivi‘ty
3 : P A

Pressurea —»



Opposite limit. Nearly free electrons = Gellium.

The lattice of ions is replaced by a homogeneous background of charge density £

H = E 13;2 / dR—1__ clp l E V(Z; —&;) with V(Z) = i
— | 2m |7 — R| 2 ot J | 7|
i i#]

. (= 1 —ik-@ At :

Field operators: ‘I'q(x) = — E € Cp | Plane wave representation.
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